医療従事者の為の最新医療ニュースや様々な情報・ツールを提供する医療総合サイト

QLifePro > 医療ニュース > テクノロジー > ナノポアセンサとAI技術でインフルエンザウイルス型を高精度に識別-阪大

ナノポアセンサとAI技術でインフルエンザウイルス型を高精度に識別-阪大

読了時間:約 1分8秒
このエントリーをはてなブックマークに追加
2018年11月28日 PM12:45

従来法では感染初期の判定が困難、識別精度も実施者に依存

大阪大学は11月21日、ナノポアセンサとAI技術を融合させた新しい1粒子検出法を用いて、インフルエンザウイルスの型(A型、B型、A亜型)を高精度に識別することに成功したと発表した。この研究は、同大産業科学研究所の川合知二特任教授、筒井真楠准教授、有馬彰秀特任助教(常勤)、鷲尾隆教授と、東京工業大学物質理工学院応用化学系の大河内美奈教授らの研究グループによるもの。研究成果は「Scientific Reports」に公開されている。


画像はリリースより

現在、臨床現場におけるインフルエンザウイルスの型判定は、1対1の抗原抗体反応を基盤とするイムノクロマトグラフィーで行われている。この手法は簡便である一方、その識別精度が人に依存する点や、感染初期における低濃度なウイルス条件では検出が困難になるという課題がある。

粒子1個で72%、20個以上では95%以上の精度

今回研究グループは、極薄窒化シリコン膜中に開けられたナノ細孔(ナノポア)を通るイオン電流を計測するナノポア法を用いて、インフルエンザウイルスを1個レベルで検出。機械学習によるパターン認識技術をイオン電流シグナルの解析に応用した。その結果、インフルエンザウイルス粒子1個で72%、20個以上の検出で95%以上の精度で型判定が可能であることを実証したという。

この研究成果により、判定する人の能力に依存しない、感染初期でのインフルエンザの型判定が可能になり、患者の負担軽減やウイルス感染の拡大抑止が期待される。また、同手法はインフルエンザのみならず、あらゆるウイルス種への応用が可能であることから、従来の1種類のウイルス同定のみに限定されている現状の検査キットの性能を大きく超える、多項目ウイルス検査の実現も期待されるとしている。

このエントリーをはてなブックマークに追加
 

同じカテゴリーの記事 テクノロジー

  • モバイル筋肉専用超音波測定装置を開発、CTのように広範囲描出可能-長寿研ほか
  • ヒトがアンドロイドの「心」を読み取り、動きにつられることを発見-理研
  • 生活習慣病の遺伝的リスクと予防効果の関係、PRS×AIで評価-京大ほか
  • 精神的フレイル予防・回復支援「脳トレシステム」開発-愛知産業大ほか
  • ChatGPTと放射線科医、骨軟部放射線領域の診断精度を比較-大阪公立大ほか